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action at each layer. These parameters are chosen such
that a favorable tradeoff between operating costs and
performance level achieved is obtained. An approximate
tradeoff measure is developed to ease the computational
burden required to carry out the tradeoff analysis.

The investigations reported in the preceding sections
reprasent an initial step in the formal treatment of this
multilayer strategy and its associated tradeoff problem.
There is, therefore, a considerable need for further research
in this area.
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Team Decision Theory and Information
Structures in Optimal Control Problems—Part I
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Abstract—Information structures of organizations are studied and
applied to problems of dynamic team decisions. For a causal system
itis shown that there is a partially ordered precedence relation exist-
ing among the decision makers.

The team decision problem with linear information structure and
quadratic payoff function is dealt with. The primitive random vari-
ables are assumed to be jointly Gaussian. The optimal solutions for
the teams in which precedents’ informtion is available for the follow-
ers are obtained. It is shown that the well-known linear-quadratic-
Gaussian stochastic control problem and static team decision prob-
lem are special cases of the structure considered.

I. INTRODUCTION AND PROBLEM STATEMENT

ITHIN a general organization there are ‘many
members, each controlling different action or de-
cision variables at different times, each having access to
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different information, and cach attempting to attain
different goals. A team is an organization in which there is
a single goal or payoff common to all the members. Let us
consider a team composedof i €1 = {1,2, -+, N} mem-
bers. Each member receives certain information z, and
controls the decision variable u, where the nature of
these variables will be defined presently. We denote the
payoff function for all the members as '

J = J(‘m Ty T 7.V), (1)
where v, is the control law or decision rule,
u = vz and v, E T, (&3]

used by the ith member and T is the class of admissible
control laws for i. The team-theoretic optimization problem
can then be informally stated as follows.

Problem 1: Find v.* € T, for all i such that J (v, 12, - -
wx) is minimized. If the system or organization evolves
dynamically in time and the decisions of the members
interact with the payoff as well as the information received
by the members, then we have an optimal control problem
in which team decision theory and information structure
plays a decisive role. The purpose of this paperis to investi-
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gate one such class of problems and to present various
explicit results.

Marschak [1) first formulated the team problem more
than 16 years ago. So far, theoretic work is mainly limited
to the static teams [2), [3] in which information z, is only
the function of some random variable £ but is independent
of what other members have done. However, in a dynamiec
team, present information is affected by what has been
done in the past. Therefore, the present estimation and
decision are dependent on the actions of the other mem-
bers in the past; this very dependence is itself affected by
the past actions which are part of the solution to be ob-
tained. Because of the difficulties caused by the interactions
among information estimation and control variables, there
has been no substantial work done in the dynamic case.

A. Information Structures

Let ¢ € R" denote a random vector defined on an under-
lying probability space (R*, §, P), and let it represent all
the uncertaintics of the external world which are not con-
trolled by any of the members. We assume that the prob-
ability distribution of £ is known to all the members and
is Gaussian N (0, X) with X > 0.

The information z, each member receives includes every-
thing available as knowledge to him for making decisions.
This consists of what he has remembered, what he has
observed, and what other members have communicated
to him, ete. The information 2, is assumed to be a known
linear function in R of ¢ and some of the control actions
other members have taken, i.e.,

2, = HE + 2 Dy, ¥ 1, @
Fl

where H and D, are matrices of appropriate dimensions

and are known to all the members. We shall be interested

in only real causal systems where what happens in the

future cannot affect what is observed now. Thus, in (3) we

assume
Du;160=) D“=0, V‘l,jeI:' (4)

i.e., if the control action of j affects the information %, then
u, cannot affect the information of 5. We have in mind here
essentially a discrete-time dynamic situation in which
current actions can affeet, at most, information in the sue-
ceeding, but not the current, stage.

We formalize this in the following definitions.

Definition 1: We say j is related to 1, jRi, if D,y = 0.

Definition 2: We say j is a precedent of 1, j { 1, iff (a) jR: -

or (b) there exists distinet r, 8, ¢, - - -, k € I such that jRr
and rRs and sRY, - - -, kRi.

Graphically, we can represent the idea of precedence in a
precedence diagram. Each member of the team [decision
maker (DM)] is represented by a node so placed that the
node for j is above that for ¢ if j { i. One then draws a
directed segment from node j to node 1 if jR: and there
exists no k such thatj { kand k {i. A path, consisting of a
connected series of directed segments, exists between j and
i'if and only if 7 { 1.
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Fig. 1.
Ezample 1:
Du = 0, ¥ 1 and 1
Z2¢ = H{E, v i. (5)

The precedence diagram for this system is simply isolated
nodes. (See Fig. 1.) Since there is no explicit causal relation
between the control and information of different members,
we call structures such as this, with isolated members in
the precedence diagram, static teams.

In a static team the information of each member may not
be obtained at the same time, nor need the control actions
executed by each member take place simultaneously. As
long as there are no casual precedence relations among the
members, the actual time instants when the observation
and actions oceur are not important.

Ezample 2: In a classical multistage stochastic control
problem, the dynamic equation is

x(+l=in+Gu{+wb i=11"':N: (6)
and the observation at each stage is
y¢=H$:+v¢, i=1,---, N, (7)

where z, is the state, u, the control, and w, and v, the in-
dependent sequences of random variables. The distribu-
tions of 3, wy, and v, for all 7 are known to be independent
zero-mean and Gaussian. The system is assumed to be of
perfect memory in the sense that at time 7, the decision
maker remembers perfectly what he has known and what
he has done before. Imagine there are N members of a
team to control the system and that the ith member is
responsible for u, at the sth stage.
Since

z; = linear in (T4, Ue-1, We-1)

Y1, (8)
which is clear from the recursive equation (6), the informa-
tion for member 7 is

U1

= linearin (21, s, -+ -, Ugmr; W, - * 5 Wemr),

Ul | = linear in (zl; Ugy * 0y Uity Wy -0 0y Wit

n

2y =

v,
¥ i (9)

The random variables z;; w1, * - -, wa; 0, - - -, Ux all together
represent the same thing as ¢ defined earlier, that

RN AR
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Fig. 2.

] vNT)' (lO)

= @hw o w
Equation (10) can be rewritten as

2y = linearin (& wy, -, Y1)

=1

=Hg + ’Zl Dyu, an
for some H,and Dy, and for all 7, where nonc of the matrices
D, are zero matrices. We note from (9) that 2, is imbedded
in z, as components if j < 1. We stress this fact by drawing
a memory-communication line segment (dotted line) from
j to © on the precedence diagram. Intuitively, this suggests
that whatever j knows is either remembered by 7 (in the
case of one player acting as a different DM at different
times) or is passed on to ¢ (when we have diffcrent players).
The precedence diagram with its memory-communication
line for this example is shown in Fig. 2. Note, since z; in-
cludes z,;, it is not nccessary to have a dotted-line segment
joining nodesj 4+ 1 and.j — 1.

The precedence diagram with its memory-communica-
tion lines will be called the information structure diagram.
It is a graphic representation of (3). The information
structure diagram is essential to the analysis of informa-
tion ‘ransmission and causal relations. Any linear dynamic
system of (6) and (7) (time varying or not) can be put in
our normalized form of (3) by a method similar to that of
Example 2. Linear dynamic processes without ‘perfect
memory or with only partial feedback fit naturally into
our structure. A general example of a linear-Gaussian team
problem is found in Example 3. '

Ezample 3:

7 = Hi§
z; = Hyt
= Hit + Daw + Dnua
)l L]

z, = £+ Uz
H, DuDx0 | us

zs = Dsu,

2y = Het + Dy,

zr = Hqt

23 = Dgu:. (12)
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GROUP I

GROUP 1

Fig. 3.

The information structure diagram is displayed in Fig. 3.
Members one, two, and seven are starting decision makers of
the team; members five, six, and eight are the terminating
decision makers. In the sequel we shall index the members
in such a way that if j is a precedent of , then j < .

B. Control Laus

Each decision maker makes a decision at a single time
moment. The information z; is madc available for the sth
member just before he makes his decision. In practice some-
one may have to make a decision more than once at differ-
ent times, then cither the information available on all
these occasions is the same, and then these decisions are
considered as a single one picked from a product set, or
elsc the information available is not the same, and then one
can assume scparate members for cach occasion.

We define the class of admissible control laws for the ith
DM, T,, as the set of all Borel-measurable functions v.:
R® — R*. Note that forfixed y, €, i =1, ---,N,(3)in-
duces for each ¢ a sub-o-algebra Z, € F, and z are well-
defined random variables measurable with respect to Z,.
Let u, take value in U, = R", then we have a o-algebra &,
on U, such that y,~(%) = Z. Note that with the excep-
tion of the static team, Example 1, §,, Z, ¥ 4, arc dependent
on the choice of ¥ = [v1, - -+, 7x]}- Therein lie the major
difficulties of the solution of dynamic team problems.
Fortunately, for a large class of such problems with special
information structures, this difficulty can be circumvented.

C. Payoff Funclion

The common goal for all members is to minimize the
function

"Iy, vy vw) = Elg] = E[du™Qu + u™SE + u’c],

U

.

(13)

UnN,

where Q is symmetric positive definite and u, are given by
(2) and the expectation is taken with respect to the a prior:
£. Matrices Q, S and vector ¢ are of appropriate dimen-
sions and are known to all the members. As stated earlier,
with the particular choice for the class of admissible control
laws, all u, are well-defined random variables and the
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meaning of the expectation is clear. Problem 1 is well de-
fined. '

II. NECESSARY CONDITIONS FOR OPTIMALITY

Problem 1: This problem is stated in the so-called “nor-
mal form.”* From a practical viewpoint, Problem 1 is not
in a suitable form for explicit solution except in the case
where the cardinality of each admissible control set is
finite and very small. To put it in & more useful form, we
first consider a relaxed version of the problem.

Problem 2: Find v,* € T for all ¢ such that

.J(‘Yx‘: Yy Y11 ‘Yt'; ‘Y(+1‘, Tty ‘YN")
< J(‘Yx": o Y™ Yo Y, o

for all 4, € I';and for all 7.

Optimality relation (14) is certainly a necessary, but not
sufficient, condition for the global solution of Problem 1.
In other words, Problem 2 is a noncooperative version of
Problem 1 in the language of game theory. We call the
solution of Problem 2 member-by-member optimal. Next
we rewrite the expectation in (13) as

J = E{g['h*_(zl)s Yy 'Yl—l‘(zl—l): 71(21)1
. Yer* @), -0y T*(2w), E1}
= E, {E[g|z.]} for fixed n*, -+ -, yeua®

*®
Yoo Y41y " %y 'YN.;

Set) (14

(15)

where the second expectation is taken with respect to any
given values of z,. However, for fized control laws v,*, - - -,
Yea*, vea® -+, v¥* and any fized 2, -

:_.éi:}‘ E"'{Ewlz‘]} A n:'En Ew(‘h‘(zl): ° "';
Y = 71(21)1 ERY) 'YN.(ZN)D E)Iz(]r (16)

Problem 3: We come to the third version of the team
optimization problem, i.e.,

min E[} u"Qu + u7St + uTclz] & min J,
“ w

a 24,

where

ut = [‘71“'(21)1 0y -y,_l"'(zt_l), 1,"(2,),
' Yeur*T(Ze1), -0 Ya*T(zN)]

for fixed v,*(z;), j # 4, and any z,.

Problem 3 is in the so-called “extensive form” or “‘semi-
normalized form” in the sense that all except one control
variable are given as strategies. A necessary condition for
the optimality of Problem 3 can be obtained by taking
partial derivatives of J with respect to u, However, the
partial differentiation must be considered with care.
Terms involve u, such that j } ¢ must be included since u,
= ,*(z,) and 2, depends on 4, through the causal relation.
Thus in general, the partial differentiation will result in

L It is stated in accordance with the usually accepted meaning in
game theory (7] or Bayesian statistical decision theory [8].
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Qury: +;§1 QuE(‘Yl|21) + ScE(Elzt) + e
+ T [u.fo., 2 Blrfed + 2 B(v/S e
prv au‘ au‘ 1 My 1

ad a3
+ GT‘E(‘Y:TIZ«)% + E‘_ a'u—‘E('thu‘an«)] =0
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for all values of z, and forall ¢ = 1, - - -, N where Q,, means
the ith row- and jth column-partitioned block of Q, S,, the
jth row-partitioned block of S, ¢,, and the ith partitioned
subvector of ¢. The last four partial derivative terms of (17)
depend explicitly on the form of controls of the following
members. This is rather unsatisfactory inasmuch as we are
attempting to solve for those control laws through the
consideration of (17). Now we see more explicitly the
difficulties connected with the solution of dynamic team
optimization problems. IFurthermore, because of this
causal dependence of v, on v for j } %, the payoff function
in Problem 3 is not generally convex in v, even though it is
quadratic in u with @ > 0, nor are z, generally Gaussian
even though ¢ are given as Gaussian. The quadratic-
Gaussian nature of J and z is dependent on the form of the
control laws v, chosen. Fortunately, for a variety of
classes of problems these difficulties can be overcome or
contained in one way or another. In later sections and in
Part II of this paper these solutions will be discussed.

III. Strartic TEaus

The results of this section are essentially those first ob-
tained by Radner [2]. We shall derive them in terms of our
notation, as they will be needed in later sections.

For this problem each member’s information is a linear
function of £ only, i.e., D;y = 0 in (3) and

z, = H, i (18)

to avoid triviality, we assume H,is ¢; X n with n > g, and
that it is of maxima} rank. '
The necessary condition of (17) immediately simplifies

- to

Quvi(z) + :Em QuE(‘Y;(21)|24) + SGE(dzl) +e =0,
¥ zoand ¥ 1, (19)

since all partial derivative terms in (17) are zero. Further-
more, we have the following lemma.

Lemma: The optimal solution of J of (13) is unique in
static teams.

Proof: Consider v; = v¢ + ¢4, Since z; is independent
of v, for all j and 4, J is strictly convex and quadratic in all
v+ This, together with the dominated convergence theorem,
enables one to interchange expectation and differentiation
[2] and to show (8%J/de?) = E(5,7Q.8,) > 0. This shows
that J is strictly convex in ¢ and the conclusion follows.

Consequently, any solution of the necessary conditions
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(19) by uniqueness will be the global optimal solution. We
try the control laws of the form

U= y2) = Adg+b, ¥4, (20)

where 4, and b, are k; X qr-matrix and k-vector, respec-
tiv-ly, to be determined. Substituting (20) into (19),

Qu(Adiz: + b) + g QuE(AHE + bilz)
+ SEEHz) + i =0
Qulde + b) + LE QuAH, + s.]
-E(gz) + }: Qibstc =0

(jélQubl + 04) + [QﬂAt + (g,‘ Qud,H, + Sl)
-XH.’(H,XH,")-*]:. =0 (21)

for all z, and for all 7, where we have utilized simple proper-
ties of jointly Gaussian random variables to evaluate
E(E|z‘) and the fact that H XH T has an mverse Since (21)
must be true for all z,, we get

BT, b7, --e, BYT) = Q! (22)
and \
Qud, + ;; QUAJHlXHtr(I.{tXHIT)—I
= ~SXHIHIXHD™, ¥,
or
¥i (23)

2 QuAH,XH[) = —SXH/,

The coefficients of the elements of 4, in the linear simul-
tancous equation (23) form a positive-definite matrix
{2, p. 870, lemmal]; hence the elements of all A, are uniquely
solvable from (23). Thus, we have the following theorem.

Theorem (Radner): The control law of (20) with (22) and
(23) is optimal for the static-team optimization problem
with the information structure (18).

IV. Dynamic TEaM wiTH PARTIALLY NESTED
INFORMATION STRUCTURE

In this section we wish to study a special class of in-
formation structure motivated by the following informal
consideration. Suppose, for each DM ¢ and all his precedent
J, the information variables z; can be generated from z, in
the sense that knowing z, implies knowing z,. A particular
case of such information structure is that of Example 2 of
Section I. In other words, the memory-communication
structure is the same as the precedence relation in the in-
formation structure diagram. Such structure has the prop-
erty that the action of all the precedents is completely
determined once the control laws are fixed. Thus the only
random effects in z; are due to the structure of the external

19

4 v
[ 1
CROUP I GRoUP I CROVP I
Fig. 4.

world £, which is not solution or control law dependent.
We define such structure formally.
Definition 3: An information structure (3) is called
parlially nested if j { iimplies Z, C Z,forall 7, j,and y E I.
Ezample 1:

zy = Hi¢
2 = Hqk

H, 0 0 0
H, 0 0 0
Zg H;' E + DSI' UL + Dn' + 0 U3
| Hs' | Dy’ 0 Dy’
z¢ = HeE
Tl
z’ -H’I E + LD’.'
= Hek.

The information structure diagram of this example is
displayed in Fig. 4. It is clear from thc diagram and above
information structure that what the precedents have
known will always be known by their followers. For.in-
stance, member three’s precedents are one and two; how-
ever, z; and 2z are the first and second components of z;,
respectively.

In a system with partially nested information pattern,
the follower can always deduce the action of its precedents.
For example, for a fixed v, the first member of Example 2
has as his control

W = “71(2\)- (24)

Since the team can agree in advance on the decision rule
or control law used, the third member can deduce the action
u, exactly by using (24). Thus, the extra information u, is
redundant when the value of z, is alrcady part of the third
member’s information. The term Dy, is redundant and
hence can be delcted from z;. Likewise, term Dyu, is also
redundant and hence can be deleted from 2z, since z, is the
second component of z;.

Thus, we can formulate z; in an equivalent way such
that



Similarly, all the 2D,;u; terms attached to 2, 2;, and 27 can -

be deleted without any change in the team performance.
In general, it is clear that we have the following thcorem.

Theorem I: In a dynamie team with the partially nested
information structure,

z,=H &+ (Z Dijuj (26)
Fitl

is equivalent to an information structure in static form
for any fixed set of control laws
3 o= ({HHi{iorj =}l

Proof: We partxtlon the N-members into the follomng
disjoint sets:

N1=
Nz=

@0

set of starting members}
sct of members having 7 as prec¢edent, where? € N, }

N;= {set of members having ¢ as prccedcqt, where
iE N}

It is clear that 2, = 2, = Hforall : € N;. Now let
- 2 =2— 2 Dyv(2) '

= H, ¥ 1€ N.andj E N (28)
Sinec Z; @ Z,, then 2, will be Z; mc'lsumblc Conversely,
knowing 2, we can compute

=2z + ; Dy (20, ¥ i€ NsandjEN:. (29)
Hi

Now, by rccursion we ean ealculate z from 2, or vice versa

fOl‘leNs,Nh",CtC QBD

Remark 1: The reduction of (’6) to (27) is possible only
when we are considering pure strategy solution exclusively.
In more general gnme-theoretic optimization problems with
different information for each member in a team and
different payoff functions for each of the teams, partially
nested information structure alone may not be sufficient
to effect the reduction—since with mixed strategies know-
ing all that others have known is not sufficicnt to deduce
what they have actually done.

Remark 2: Note that the validity of Theorem 1 is in-
dependent of the nature of the criterion funetion J. Fur-
thermore, so long as somc invertibility conditions are
satisfied, 2z, nced not be linear functions of & and u;
for j { %; nor does £ have to be Gaussian. The property
of partial nésting only depends on the definition of the
various sub-¢ algebra in Definition 3.

Theorem 2: In a dynamic team with partially nested in-
formation structure, the optimal control for each member
exists, is unique and linear in z;.

Proof: As shown by Theorem 1, a team with informs-
tion structure (26) is cquivalent to one with static strue-
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ture (27). Therefore, by Raaher’s theorem, the optimal con-
trol law exlsts, is unique and linear in 2. Since #, = z, for
t € Ny, v,is linear in 2, for i € N, also. By (28) we deduce
that v, is linear also in z, for i € N;. Repeated application
of Theorem 1 and (28) yields the desired result. Q.E.D.

Application 1—Linear Quadratic-Gaussian Conlrol Prob-
lems: Consider again Example 2 of Section IT with a
quadratic payoff function

1
J = E[ I " SvsZasr + 2. Z (z."H™Hz, + utrbuk)]

(30)

where Sy 2> 0, B> 0.

After absorbing recursive dynamic relations (6) into
information functions (9) and payoff function (30), we
have

]
zi =) uy | = lincar in (& 1w, -+, ), ¥ i (31)
W
LYt
and

J=E [ uTQu + u"Se] + termsindependent of u  (32)

T, -, weyTs nT, ---, oyT), which is
Gaussian. Also Q > 0, @ and S are matrices dependent on
only the original parameters of the problem.

Since the information 2, for different members is nésted
in their natural sequence, by Theorem 2 the optimal con-
trols exist, are unique and lincar in 2; such that

*= A2+ by

where £ = (1,7,

M (33)
for some 4;and b,. _ _
In control literature the solution (33) permits further
simplification in the sensc that the measurement history z,
admits a pair of finite-dimensional sufficient statistics £,
(linear in y,) and P, which are the mean and covariance,
respectively, of a Kalman-Bucy filter. u,* can be expressed
as a linear function of &; only. Computationally and physi-
cally, this is both meaningful and simplifying [4]. However,
our purposehere is to demoustrate the intrinsic naturcofthe
classic lincar-quadratic-Gaussian (LLQG) control problem.
We have observed that its information structure is basi-
cally cquivalent to a static onc and it permits a linear solu-

tion.

Remark 3: Note that this conclusion eoncerning the
optimality of the lincar solution is independent of the
correlations between x;, wy, v, for all £, j. In fact, the various
noise sequences need not even be Markov. We only re-
quire that they be jointly Gaussian distributed.
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- Application 2—One-Step Communication Delay Control
Systems [6]: Suppose we have two coupled linear-discrete
time-dynamic systems controlled by u(¢) and w.(¢), ¢ = 1,
2, .-+, N, with the usual Gaussian disturbance and noise
setup. y1(f) and y.(¢) are the noise observations for the
system. Suppose

a(d) = {n() w®|r=12 -, k=1t -1}
32('5) = {yi(r); yl(k)lf =12 "')t;k =1--t= 1}

i.e., two controllers share all past information with one-step
communication delay. The information structure diagram
of such a system will have the appearance of Fig. 5. It is
by inspection partially nested. Hence, if the criterion is
quadratic in the state and control variables, then by
Theorem 2, the optimal solution is linear. Furthermore, if
there is a third linear system coupled to the first system via
the second system as shown in Fig. 6, then we may con-
ciude that the first system can tolerate a two-step delay
in sharing information with the third system. Since
u(t — 1) does not affect the information 2(f), we do not
have to know z;(¢ — 1) to maintain linearity of the optimal
solution. -

Application 3—Hierarchical Control System: Suppose an
information structurc diagram is that of Fig. 7, which in-
formally represents a chain of commands. Then under
lincar-quadratic-Gaussian assumptions, the optimal solu-
tion is again linear without the necd for lateral communica-
tion.

Roughly speaking, the implication of Theorem 2, is that,
if @ DM’s action affects our information, then knowing what
ke knows will yield linear optimal solutions.

Application 4—Two-Person Zero-Sum Multistage Games:

In the usual formulation of LQG zero-sum decision games,
we have ‘

T = Pz, + Dy + Doy + w,,
yl! = Hﬂ:‘ + v;l

1=1, ...,N (34)

¥ = ng, + Dgz, 1= 1', ey N (35)
2! = {y,‘|j <
@={yj<i}, i=1,---N, ~(36)

ie., each player has perfect memory but does not know the
other players’ information.

Uz()

u3(l

Fig. 7.
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This problem does not have partially nested information
structure. On the other hand, since the problem is zero sum
there is no cooperation feature in the problem. Thus the
Problem 1 version of the problem is equivalent to that of
Problem 2. Now, if one assumes a linear control law of the
type of (20) for all u,,, then P(z,*/z,!) will be Gaussian for
all 7, §, and the partial derivative terms in (17) can be ex-
plicitly evaluated. The problem from the viewpoint of
player one is then an LQG dynamic optimization problem
with partially nested information structure. Consequently,
u* will have a linear structure of the type of (20). Now,
when this control law for u, is used again in (17) for u,, we
get the self-consistent result that ua, is linear. These linear
saddle point controls are optimal for both players in a
global sense by the reason that in a zero-sum game any
saddle point strategy will be equivalent and interchange-
able [9]. The details of this are best illustrated via a two-
stage example where the arithmetic is not too cumbersome.

The point here is that linearity of the optimal solution in
an LQG zero-sum multistage game is primarily due to the
absence of cooperation and, only as a secondary matter,
dependent on the perfect memory feature of the players.

V. ConcLusioN

In this paper we have essentially answered the question
“when does a general linear-quadratie-Gaussian prob-
lem have optimal linear solutions” in the context of
decentralized multidecision-maker environment. We have
shown the importance of the concept of a partially nested
information structure diagram which enables the reduc-
tion of a dynamic problem of a static one.
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Abstract—General dynamic team decision problems with linear
information structures and quadratic payoff functions are studied.
The primitive random variables are jointly Gaussian. No constraints
on the information structures are imposed except causality.

Equivalence relations in information and in control functions
among different systems are developed. These equivalence relations
aid in the solving of many general problems by relating their solu~
tions to those of the systems with ‘‘perfect memory.’ The latter can
be obtained by the method derived in Part L A condition is found
which enables each decision maker to infer the information available
to his precedents, while at the same time the controls which will
affect the information assessed can be proven optimal. When this
condition fails, upper and lower bounds of the payoff function can
still be obtained systematically, and suboptimal controls can be ob-
tained.
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«

I. INTRODUCTION

N Part I of this paper, Ho and Chu [1] have discussed
the information structures in a general organization and
their relation to team decision problems. It is found that
in a general causal system a partially ordercd precedence
relation { can be defined among all the members. This
precedence relation then specifies the nature of the solu-
tion.
A linear-quadratic-Gaussian (LQG) team problem (Q,
S, ¢ H, D‘,Ii,j = 1, ---, N) is an optimal dccision prob-
lem with payoff function

(1

where uT = (7, - - -, uy7) and u; is the action variable of
team member 7; matrices Q, S and vector ¢ are fixed and
of appropriate dimensions, Q is symmetric positive defi-
nite; the random variable of the external world ¢is @ priori
Gaussian with distribution N(O, X). The information z

J = Elg] = E(bu"Qu + u"St + uc]
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